Alexander B. Thames

ayt5134@psu.edu

Department of Geosciences Deike Building Room 336 University Park, PA, 16802

(610) 639 – 9374 903 Oakwood Ave State College, PA, 16803

> State College, PA 2019 – Present

> State College, PA

State College, PA

2019 – Present

2015

CURRENT POSITION

Pennsylvania State University
PhD Candidate
Advisors: Dr. Antonia Hadjimichael, Dr. Bradford J. Foley

EDUCATION

Pennsylvania State University, Eberly College of Science BS: Physics, *with high distinction*; Minor: Mathematics

RESEARCH EXPERIENCE

Pennsylvania State University, Department of Geoscience	
PhD Candidate	

- Developing and implementing a multisite and multivariate synthetic weather generator to be used in conjunction with Colorado's StateCU and StateMod systems in order to provide decision-makers and shareholders with probabilistic information on agricultural and climate risks in the Colorado River Basin
- Constructing exploratory models investigating how Earth's internal and external water reservoirs affect its thermal history and confines the present-day volatile flux into the mantle

Pennsylvania State University, Department of Meteorology	State College, PA
and Atmospheric Science	
Researcher	2015 – 2019
Field and laboratory operation of the Airborne Tropospheric Hydrogen Oxide	s Sensor (ATHOS) and
the OH Reactivity (OHR) instruments	
Atmospheric Tomography (ATom) Mission	2016 - 2018

• Participated in a NASA four-season airborne campaign as the sole operator of the ATHOS and OHR instrument suite for 40+ research flights aboard the NASA DC-8 research aircraft as it flew between northern and southern polar regions, constantly ascending or descending between approximately 500ft and 39,000ft

- Converted raw data into OH, HO₂, and OHR data measurements using MATLAB software that I extensively modified
- Analyzed these measurements by comparing them to a box model

Korean-United States Air Quality (KORUS-AQ) Mission

2016

- Participated in a NASA international field campaign operating the ATHOS and OHR instrument suite for over 120 flight-research hours aboard the NASA DC-8 research aircraft
- Converted raw data into OH, HO₂, and OHR data measurements using MATLAB software • that I extensively modified
- Analyzed these measurements by comparing them to a box model

OH Reactivity Inter-Comparison

- Participated in an OH reactivity instrument comparison study in Jülich, Germany as the • sole United States representative amongst eleven different participating research organizations
- Helped integrate three distinct laboratory pieces from three separate research • institutions into an operational field experiment and operated the instrument during the comparison study
- Converted raw data into OHR data measurements using MATLAB software that I extensively modified

Pennsylvania State University, Eberly College of Science State College, PA

Undergraduate Researcher, Research Experience for Undergraduates Participant 2014 - 2015

• Used C++ and ROOT schemes to analyze data from the Pierre Auger Observatory to map the incident direction of cosmic ray particles

University of Pennsylvania, LRSM	Philadelphia, PA
Project Manager, Volunteer	2013

Responsible for the preliminary design and construction of an automated safety cut-off circuit to be used in clinical studies at the Hospital of the University of Pennsylvania and Children's Hospital of Philadelphia

GRANTS and AWARDS

Earle S. Lenker Award Pennsylvania State University	2022
Paul D. Krynine Scholarship Pennsylvania State University	2020 - 2022
NASA Group Achievement Award, ATom National Aeronautics and Space Administration	2019
NASA Group Achievement Award, KORUS-AQ National Aeronautics and Space Administration	2016
John and Elizabeth Holmes Teas Scholarship Fund Pennsylvania State University	2014
RELATED PROFESSIONAL EXPERIENCE/SKILLS	

Fieldwork

YAG and dye laser maintenance and realignment

2015

- Diagnostic in-flight physical and electronic instrument repair
- Custom software creation/data processing on atmospheric physics/chemistry data

Languages

- Electronic: MATLAB, python, C#, LaTeX, HLSL
- Spoken: English, with some Spanish

Leadership

•	College of Earth and Mineral Science Graduate Student Council	2019 - 2022
•	Student Government: University Park Undergraduate Association	2014 - 2015
•	Fraternity President: Delta Upsilon	2013

PEER-REVIEWED PUBLICATIONS

First Author

 Alexander B Thames, William H Brune, David O Miller, Hannah M Allen, Eric C Apel, Donald R Blake, T Paul Bui, Roisin Commane, John D Crounse, Bruce C Daube, Glenn S Diskin, Joshua P DiGangi, James W Elkins, Samuel R Hall, Thomas F Hanisco, Reem A Hannun, Eric Hintsa, Rebecca S Hornbrook, Michelle J Kim, Kathryn McKain, Fred L Moore, Julie M Nicely, Jeffrey Peischl, Thomas B Ryerson, Jason M St Clair, Colm Sweeney, Alex Teng, Chelsea R Thompson, Kirk Ullmann, Paul O Wennberg, Glenn M Wolfe, (2020). Missing OH reactivity in the global marine boundary layer. Atmospheric Chemistry and Physics, 20(6), 4013-4029.

Co-Author

- Hendrik Fuchs, Anna Novelli, Michael Rolletter, Andreas Hofzumahaus, Eva Y Pfannerstill, Stephan Kessel, Achim Edtbauer, Jonathan Williams, Vincent Michoud, Sebastien Dusanter, Nadine Locoge, Nora Zannoni, Valerie Gros, Francois Truong, Roland Sarda-Esteve, Danny R Cryer, Charlotte A Brumby, Lisa K Whalley, Daniel Stone, Paul W Seakins, Dwayne E Heard, Coralie Schoemaecker, Marion Blocquet, Sebastien Coudert, Sebastien Batut, Christa Fittschen, Alexander B Thames, William H Brune, Cheryl Ernest, Hartwig Harder, Jennifer BA Muller, Thomas Elste, Dagmar Kubistin, Stefanie Andres, Birger Bohn, Thorsten Hohaus, Frank Holland, Xin Li, Franz Rohrer, Astrid Kiendler-Scharr, Ralf Tillmann, Robert Wegener, Zhujun Yu, Qi Zou, Andreas Wahner (2017). Comparison of OH reactivity measurements in the atmospheric simulation chamber SAPHIR. *Atmospheric Measurement Techniques*, *10(10)*, 4023-4053.
- Paul S Romer, Paul J Wooldridge, John D Crounse, Michelle J Kim, Paul O Wennberg, Jack E Dibb, Eric Scheuer, Donald R Blake, Simone Meinardi, Alexandra L Brosius, **Alexander B Thames**, David O Miller, William H Brune, Samuel R Hall, Thomas B Ryerson, Ronald C Cohen (2018). Constraints on Aerosol Nitrate Photolysis as a Potential Source of HONO and NO_x. *Environmental Science and Technology*, *52(23)*, 13738-13746.
- 3. GM Wolfe, JM Nicely, JM St Clair, TF Hanisco, J Liao, L Oman, WH Brune, DO Miller, **AB Thames**, GG Abad, TB Ryerson, J Peischl, K McCain, C Sweeney, PO Wennberg, MI Kim, JD Crounse, SR Hall, K Ullmann, GS Diskin, TP Bui, CS Chang, JM Dean-Day,

(2019). ATom: Column-Integrated Densities of Hydroxyl and Formaldehyde in Remote Troposphere. *ORNL DAAC*.

- 4. Glenn M Wolfe, Julie M Nicely, Jason M St Clair, Thomas F Hanisco, Jin Liao, Luke D Oman, William B Brune, David Miller, **Alexander Thames**, Gonzalo González Abad, Thomas B Ryerson, Chelsea R Thompson, Jeff Peischl, Kathryn McKain, Colm Sweeney, Paul O Wennberg, Michelle Kim, John D Crounse, Samuel R Hall, Kirk Ullmann, Glenn Diskin, Paul Bui, Cecilia Chang, Jonathan Dean-Day, (2019). Mapping hydroxyl variability throughout the global remote troposphere via synthesis of airborne and satellite formaldehyde observations. *Proceedings of the National Academy of Sciences*, *116(23)*,11171-11180.
- 5. Saewung Kim, Roger Seco, Dasa Gu, Dianne Sanchez, Daun Jeong, Alex B Guenther, Young-Ro Lee, John E Mak, Luping Su, Dan Bi Kim, Joonyoung Ahn, John Sullivan, Thomas Mcgee, Russell Long, William H Brune, Alexander Thames, Armin Wisthaler, Markus Müller, Andrew Weinheimer, Tomas Mikoviny, Melissa Yang, Jung-Hun Woo, Soyoung Kim, Hyunju Park, (2020). The roles of suburban forest in controlling vertical trace gas and OH reactivity distributions-a case study for Seoul Metropolitan Area. *Faraday Discussions*.
- 6. WH Brune, DO Miller, AB Thames, HM Allen, EC Apel, DR Blake, TP Bui, R Commane, JD Crounse, BC Daube, GS Diskin, JP DiGangi, JW Elkins, SR Hall, TF Hanisco, RA Hannun, EJ Hintsa, RS Hornbrook, MJ Kim, K McKain, FL Moore, JA Neuman, JM Nicely, J Peischl, TB Ryerson, JM St. Clair, C Sweeney, AP Teng, C Thompson, K Ullmann, PR Veres, PO Wennberg, GM Wolfe, (2020). Exploring oxidation in the remote free troposphere: Insights from Atmospheric Tomography (ATom). *Journal of Geophysical Research: Atmospheres, 125(1)*, e2019JD031685.
- 7. Patrick R Veres, J Andrew Neuman, Timothy H Bertram, Emmanuel Assaf, Glenn M Wolfe, Christina J Williamson, Bernadett Weinzierl, Simone Tilmes, Chelsea R Thompson, Alexander B Thames, Jason C Schroder, Alfonso Saiz-Lopez, Andrew W Rollins, James M Roberts, Derek Price, Jeff Peischl, Benjamin A Nault, Kristian H Møller, David O Miller, Simone Meinardi, Qinyi Li, Jean-François Lamarque, Agnieszka Kupc, Henrik G Kjaergaard, Douglas Kinnison, Jose L Jimenez, Christopher M Jernigan, Rebecca S Hornbrook, Alan Hills, Maximilian Dollner, Douglas A Day, Carlos A Cuevas, Pedro Campuzano-Jost, James Burkholder, T Paul Bui, William H Brune, Steven S Brown, Charles A Brock, Ilann Bourgeois, Donald R Blake, Eric C Apel, Thomas B Ryerson, (2020). Global airborne sampling reveals a previously unobserved dimethyl sulfide oxidation mechanism in the marine atmosphere. *Proceedings of the National Academy of Sciences, 117(9)*, 4505-4510.
- Katherine R Travis, Colette L Heald, Hannah M Allen, Eric C Apel, Stephen R Arnold, Donald R Blake, William H Brune, Xin Chen, Róisín Commane, John D Crounse, Bruce C Daube, Glenn S Diskin, James W Elkins, Mathew J Evans, Samuel R Hall, Eric J Hintsa, Rebecca S Hornbrook, Prasad S Kasibhatla, Michelle J Kim, Gan Luo, Kathryn McKain, Dylan B Millet, Fred L Moore, Jeffrey Peischl, Thomas B Ryerson, Tomás Sherwen, Alexander B Thames, Kirk Ullmann, Xuan Wang, Paul O Wennberg, Glenn M Wolfe, Fangqun Yu, (2020). Constraining remote oxidation capacity with ATom observations. Atmospheric Chemistry and Physics, 20(13), 7753-7781.
- 9. Agnieszka Kupc, Christina J Williamson, Anna L Hodshire, Jan Kazil, Eric Ray, T Paul Bui, Maximilian Dollner, Karl D Froyd, Kathryn McKain, Andrew Rollins, Gregory P Schill, **Alexander Thames**, Bernadett B Weinzierl, Jeffrey R Pierce, Charles A Brock, (2020). The potential role of organics in new particle formation and initial growth in the remote tropical upper troposphere. *Atmospheric Chemistry and Physics Discussions*, 1-38.

- 10. Siyuan Wang, Eric C Apel, Rebecca H Schwantes, Kelvin H Bates, Daniel J Jacob, Emily V Fischer, Rebecca S Hornbrook, Alan J Hills, Louisa K Emmons, Laura L Pan, Shawn Honomichl, Simone Tilmes, Jean-François Lamarque, Mingxi Yang, Christa A Marandino, Eric S Saltzman, Warren de Bruyn, Sohiko Kameyama, Hiroshi Tanimoto, Yuko Omori, Samuel R Hall, Kirk Ullmann, Thomas B Ryerson, Chelsea R Thompson, Jeff Peischl, Bruce C Daube, Róisín Commane, Kathryn McKain, Colm Sweeney, Alexander B Thames, David O Miller, William H Brune, Glenn S Diskin, Joshua P DiGangi, Steven C Wofsy, (2020). Global Atmospheric Budget of Acetone: Air-Sea Exchange and the Contribution to Hydroxyl Radicals. *Journal of Geophysical Research: Atmospheres, 125(15)*, e2020JD032553.
- 11. Katherine R Travis, Colette L Heald, Hannah M Allen, Eric C Apel, Stephen R Arnold, Donald R Blake, William H Brune, Xin Chen, Róisín Commane, John D Crounse, Bruce C Daube, Glenn S Diskin, James W Elkins, Mathew J Evans, Samuel R Hall, Eric J Hintsa, Rebecca S Hornbrook, Prasad S Kasibhatla, Michelle J Kim, Gan Luo, Kathryn McKain, Dylan B Millet, Fred L Moore, Jeffrey Peischl, Thomas B Ryerson, Tomás Sherwen, Alexander B Thames, Kirk Ullmann, Xuan Wang, Paul O Wennberg, Glenn M Wolfe, Fangqun Yu, (2020). Constraining remote oxidation capacity with ATom observations. Atmospheric chemistry and physics, 20(13), 7753-7781.
- 12. Saewung Kim, Roger Seco, Dasa Gu, Dianne Sanchez, Daun Jeong, Alex B Guenther, Youngro Lee, John E Mak, Luping Su, Dan Bi Kim, Youngjae Lee, Joon-Young Ahn, Tom Mcgee, John Sullivan, Russell Long, William H Brune, **Alexander B Thames**, Armin Wisthaler, Markus Müller, Thomas Mikoviny, Andy Weinheimer, Melissa Yang, Jung-Hun Woo, Soyoung Kim, Hyunjoo Park, (2020). The role of a suburban forest in controlling vertical trace gas and OH reactivity distributions–a case study for the Seoul metropolitan area. *Faraday Discussions, 226*, 537-550.

CONFERENCES

American Geophysical Union	Online
Poster Presentation	2021
Thames, A.B. , Foley, B.J: <i>Producing Feasible Water and Thermal Ev</i> Earth's Mantle Using Monte Carlo Analysis	volutions for
American Geophysical Union	Online
Poster Presentation	2020
Thames, A.B. , Foley, B.J: Using Monte Carlo Analysis and Present-D Earth's Water Budget to Produce Feasible Water and Thermal Histo Time Integration	5
American Geophysical Union	Washington, D.C
Poster Presentation	2018
Thames, A.B. , Brune, W.B., Miller, D.O.; NASA ATom Science Team <i>Reactivity in the Remote Marine Boundary Layer and the Potential o</i> <i>Reactivity</i>	
Atmospheric Tomography Mission Science Team Meeting II	Boulder, CO
Oral Presentation of Research	2018

Thames, A.B., Brune, W.B., Miller, D.O.; NASA ATom Science: Research Update #2

Korea-US Air Quality Mission, Science Team Meeting II Oral Presentation of Research	Irvine, CA 2018
Thames, A.B., Brune, W.B., Miller, D.O.; NASA KORUS-AQ Science: Research Update #2	
American Meteorological Society Poster Presentation	Austin, TX 2018
Thames, A.B. , Brune, W.B., Miller, D.O.; NASA ATom Science: <i>Measured C ATom1 and ATom2</i>	OH Reactivity in
Atmospheric Tomography Mission Science Team Meeting I Poster Presentation	Boulder, CO 2017
Thames, A.B., Brune, W.B., Miller, D.O.; NASA ATom Science: Research Update #1	
Korea-US Air Quality Mission, Science Team Meeting IJeju IslaOral Presentation of Research	nd, South Korea 2017
Thames, A.B. , Brune, W.B., Miller, D.O., Brosius, A.L.; NASA KORUS-AQ So <i>Update #1</i>	cience: Research
OH Reactivity Intercomparison Science Team Meeting Oral Presentation of Research	Jülich, Germany 2016
Thames, A.B., Brune, W.B., Miller, D.O.; Research Update #1	